If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+25=81
We move all terms to the left:
x^2+25-(81)=0
We add all the numbers together, and all the variables
x^2-56=0
a = 1; b = 0; c = -56;
Δ = b2-4ac
Δ = 02-4·1·(-56)
Δ = 224
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{224}=\sqrt{16*14}=\sqrt{16}*\sqrt{14}=4\sqrt{14}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{14}}{2*1}=\frac{0-4\sqrt{14}}{2} =-\frac{4\sqrt{14}}{2} =-2\sqrt{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{14}}{2*1}=\frac{0+4\sqrt{14}}{2} =\frac{4\sqrt{14}}{2} =2\sqrt{14} $
| x+18+5x=8x-16 | | 1/3=n+-2 | | 5x+10x-6=17x-20 | | x/3+15=44 | | 5x+11x+14=17x+4 | | x+17+4x+2=6x+2 | | 4n-12=-5+15 | | V=1/2x^26 | | 19=3w-10 | | b2+11b=0 | | 2+6w=6w+2 | | 5x+5=2-(6x-8) | | 3u-u=6 | | 4x+6=6-(9x-9) | | -44=x/6 | | 44=v/5+16 | | 44=v/5+15 | | 22.5+y=10 | | x-4/7=-5 | | 50=5x-7+4x | | -4a+44=24 | | x+16=6x-8 | | 5x+.5x=140 | | 5x+3(1/2*x)=140 | | -133=7(1-4k) | | 3d+4=2d-7 | | 132=-3(4+8a) | | 16-x/5=11 | | 8(4b+3)+8=128 | | 7×12+4x=64 | | 5x+3(2-5x)=86 | | 5=5(3+a) |